Insert geometries for Coromant U and T-MAX U drills

В

С

D

Е

F

G

		r coromant		10.2, r	1410.2	с т , п	410.22	2 anu		(410.9, L410.1
С	entral		Peripheral			3/04			LCMX 03/04	WCMX 05/06/08
L(C	CMX 02 -53		LCMX 02 P-53		D_12.7-1	17.0			D _c 17.5-25.0	r. ×
Ď	, 12.7-17.0		D ₂ 12.7-17.0		c		\bigcirc		r_{ϵ}	iC
r,					\sim					
1				_			_			
-	-+(+)				;	YT	—			
	V T	y	r_{ε}		r_{ϵ}		Min	er		
-	7° ►		7° ≁ ►		7.		VVIP		7	
ŧ			<u>+ /</u>						<u></u>	<u>↓ </u>
s T)	s Z		s				ş <u> </u>	s
+	Incort oc	do	• ·	Dimon					I	
	Insert co	de		Dimen	sions, mn	1				
	$\bigcirc = Pe$	eripheral insert								
	$\odot = C$	entral insert								
\bigtriangleup	$\odot = C$	entral and perip	heral							
» •	- ""	Sert			iC	d ₁	S	r _ε		
All-r	ound geon	netry								
02	LCMX	02 02 04 P-53	0	2.68	-	2.5	2.38	0.4		
		02 02 04 C-53		2.68	-	2.5	2.38	0.4		
		02 02 04 10-53		2.68	-	2.5	2.38	0.4		
03	LCMX	03 03 08-53	0	3.25	-	2.5	3.18	0.8		
		03 03 08-53	\odot	3.25	-	2.5	3.18	0.8		
		03 03 04-58		3.25	-	2.5	3.18	0.4		
		03 03 08 1-55 03 03 04R-WM	ŏ	3.25	_	2.5	3.18	0.8		
		03 03 04R-WM	•	3.25	-	2.5	3.18	0.4		
04		04 02 08 53	0	4.0		2.8	2 1 2	0.8		
04	LOIVIX	04 03 08-53	\odot	4.0	_	2.8	3.18	0.8		
		04 03 04-58	Ō	4.0	_	2.8	3.18	0.4		
		04 03 08 T-53	\odot	4.0	-	2.8	3.18	0.8		
		04 03 04R-WM	Θ	4.0	-	2.8	3.18	0.4		
		04 03 04R-WM	•	4.0	-	2.8	3.18	0.4		
05	WCMX	05 03 04 R-WM	1 0	5.07	7.938	3.2	3.18	0.4		
		05 03 04 R-WN	1 •	5.07	7.938	3.2	3.18	0.4		
		05 03 08 R-51	Θ	5.07	7.938	3.2	3.18	0.8		
		05 03 08 R-53		5.07 5.07	7.938	3.2	3.18	0.8 0 9		
		05 03 08-58	ŏ	5.07	7,938	3.∠ 3.2	3,18	0.8		
		05 03 08 T-53	Ō	5.07	7.938	3.2	3.18	0.8		
		05 03 08-56	0	5.07	7.938	3.2	3.18	0.8		
00	MODEL	00 TO 04 D 147		614	Q 525	37	3 07	0.4		
06	VVCIVIX	06 T3 04 R-WN		6.14	9.525	3.7	3.97	0.4		
		06 T3 08 R-51	`ŏ	6.14	9.525	3.7	3.97	0.8		
		06 T3 08 R-53	•	6.14	9.525	3.7	3.97	0.8		
		06 T3 08 R-53	•	6.14	9.525	3.7	3.97	0.8		
		06 T3 08-58		0.14 6 14	9.525 9.525	3.7 3.7	3.97 3.97	0.8 0.8		
		06 T3 08 1-53	Ö	6.14	9.525	3.7	3.97	0.8		
80	WCMX	08 04 12 R-51		8.14	12.7	4.3	4.76	1.2		
		08 04 12 K-53	\odot	0.14 8 14	12.7	4.3 4.3	4.70 4.76	1.2		
		08 04 12-58	ŏ	8.14	12.7	4.3	4.76	1.2		
		08 04 12 T-53	•	8.14	12.7	4.3	4.76	1.2		
		08 04 12-56	0							

Cutting data

- Coromant U and T-Max U drills - R/L416.1, R416.2, R416.21, R416.22 and R416.9

ISO	CMC	CMC Material		Drill	Feed	Speed	Geometry / Grade				
	No.			dia			FIRST Highest	CHOICE	Compl	ementary	
			нв	D mm	f _n mm/r	v _c m/min		0		•	
Ρ	01.0	Unalloyed steel Non hardened 0.05–0.10% C	80–170	12.7–17.0 17.5–25.4 26.0–30.0 31.0–41.3 42.0–80.0	0.04–0.08 0.04–0.08 0.05–0.08 0.07–0.10 0.08–0.12	290 (230–380)	-53/3040 -53/3040 -53/3040 -53/3040 -53/3040 -53/3040	-53/1020	-53/1120 -53/1020 -53/1020 -53/1020 -53/1020	-53/1020 T-53/1020	A
	01.1	Non hardened 0.05–0.25% C	90–200	12.7–17.0 17.5–25.4 26.0–30.0 31.0–41.3 42.0–80.0	0.04-0.08 0.04-0.08 0.05-0.10 0.07-0.12 0.08-0.14	270 (225–345)	-53/3040 -53/3040 -53/3040 -53/3040 -53/3040	-53/1020	-53/1120 -53/1020 -53/1020 -53/1020 -53/1020	-53/1020 T-53/1020	
	01.2	Non hardened 0.25–0.55% C	125–225	12.7–17.0 17.5–25.4 26.0–30.0 31.0–41.3 42.0–80.0	0.04-0.10 0.04-0.14 0.08-0.18 0.10-0.20 0.12-0.24	230 (190–290)	-53/3040	-53/1020	-53/1120 -53/1020 -53/1020 -53/1020 -53/1020	-53/1020 T-53/1020	В
	01.3	Non hardened 0.55–0.80% C	150–225	12.7–17.0 17.5–25.4 26.0–30.0 31.0–41.3 42.0–80.0	0.04-0.10 0.06-0.14 0.08-0.18 0.10-0.20 0.12-0.24	210 (170–275)	-53/3040	-53/1020	-53/1120 -53/1020 -53/1020 -53/1020 -53/1020	-53/1020 T-53/1020	
	01.4	High carbon & carbon tool steel	180–275	12.7–17.0 17.5–25.4 26.0–30.0 31.0–41.3 42.0–80.0	0.04-0.10 0.06-0.14 0.08-0.18 0.10-0.20 0.12-0.24	210 (200–275)	-53/3040	-53/1020	-53/1120 -53/1020 -53/1020 -53/1020 -53/1020	-53/1020 T-53/1020	C
	02.1	Low-alloy steel	150–260	12.7–17.0 17.5–25.4 26.0–30.0 31.0–41.3 42.0-80.0	0.04-0.10 0.06-0.12 0.10-0.16 0.11-0.18 0.12-0.22	220 (180–290)	-53/3040	-53/1020	-53/1120 -53/1020 -53/1020 -53/1020 -53/1020	-53/1020 T-53/1020	D
	02.2	Hardened	220–450	12.7–17.0 17.5–25.4 26.0–30.0 31.0–41.3 42.0–80.0	0.04-0.10 0.06-0.14 0.10-0.18 0.10-0.20 0.12-0.24	170 (90–230)	-53/3040	-53/1020	-53/1120 -53/1020 -53/1020 -53/1020 -53/1020	-53/1020 T-53/1020	
	03.11	High-alloy steel	50–250	12.7–17.0 17.5–25.4 26.0–30.0 31.0–41.3 42.0–80.0	0.04-0.08 0.04-0.14 0.08-0.18 0.10-0.20 0.12-0.24	180 (160–275)	-53/3040	-53/1020	-53/1120 -53/1020 -53/1020 -53/1020 -53/1020	-53/1020 T-53/1020	E
	03.21	Hardened steel	250–450	12.7–17.0 17.5–25.4 26.0–30.0 31.0–41.3 42.0–80.0	0.04-0.10 0.06-0.12 0.10-0.16 0.11-0.18 0.12-0.22	130 (80–200)	-53/3040	-53/1020	-53/1120 -53/1020 -53/1020 -53/1020 -53/1020	-53/1020 T-53/1020	
	06.1	Steel castings	90–225	12.7–17.0 17.5–25.4 26.0–30.0 31.0–41.3 42.0–80.0	0.04-0.08 0.04-0.08 0.05-0.10 0.06-0.12 0.07-0.14	200 (140–310)	-53/3040 -53/3040 -53/3040 -53/3040 -53/3040	-53/1020	-53/1120 -53/1020 -53/1020 -53/1020 -53/1020	-53/1020 T-53/1020	F
	06.2	Low alloyed (alloying elements ≤ 5%)	150–250	12.7–17.0 17.5–25.4 26.0–30.0 31.0–41.3 42.0–80.0	0.04-0.10 0.06-0.12 0.10-0.16 0.11-0.18 0.12-0.22	160 (110–250)	-53/3040	-53/1020	-53/1120 -53/1020 -53/1020 -53/1020 -53/1020	-53/1020 T-53/1020	
Μ	05.11	Stainless steel Ferritic, Martensitic 13–25% Cr	150–270	12.7–17.0 17.5–25.4 26.0–30.0 31.0–41.3 42.0–80.0	0.04-0.10 0.04-0.14 0.08-0.18 0.10-0.20 0.12-0.24	170 (120–265)	-53/3040 -53/3040 -53/3040 -53/3040 -53/3040	-53/1020	-53/1120 -53/1020 -53/1020 -53/1020 -53/1020	-53/1020	G
	05.21	Austenitic Ni > 8% 13–25% Cr	150–275	12.7–17.0 17.5–25.4 26.0–30.0 31.0–41.3 42.0–80.0	0.04-0.10 0.04-0.12 0.08-0.14 0.10-0.16 0.11-0.18	150 (120–250)	-53/3040 -53/3040 -53/3040 -53/3040 -53/3040	-53/1020	-53/1120 -53/1020 -53/1020 -53/1020 -53/1020	-53/1020	Н
	05.51 05.52	Austenitic Ferritic (duplex)-	180–320	12.7–17.0 17.5–25.4 26.0–30.0 31.0–41.3 42.0–80.0	0.04-0.10 0.04-0.12 0.08-0.14 0.10-0.16 0.11-0.18	110 (90–145)	-53/3040 -53/3040 -53/3040 -53/3040 -53/3040	-53/1020	-53/1120 -53/1020 -53/1020 -53/1020 -53/1020	-53/1020	

Insert positioning: • = Central

• = Peripheral

-WM geometry for machining steel and cast iron with hardness < 200 HB in stable conditions, increase feed ($f_{\rm a}$) with 50%. For easy to machine stainless steels in stable conditions, increase feed ($f_{\rm a}$) with 25%.

В

С

D

Е

F

G

Н

ISO	CMC No.	Material		Drill dia	Feed	Speed		Geometry	/ Grade	
							FIRST Highest p	CHOICE roductivity	Comple	ementary
			НВ	D _c mm	f _n mm/r	v _c m/min	0	\odot	0	\odot
Μ	15.21	Stainless steel Austenitic castings	150–250	12.7–17.0 17.5–25.4 26.0–30.0 31.0–41.3 42.0–80.0	0.04-0.08 0.04-0.12 0.05-0.12 0.06-0.14 0.06-0.14	110 (80–155)	-53/1120 -53/1020	-53/1020 -53/1020 -53/1020 -53/1020	-53/1120 -53/1020 -53/1020 -53/1020 -53/1020	-53/1020
S	20.21 20.22 20.24	Heat resistant alloys	140–425	12.7–17.0 17.5–25.4 26.0–30.0 31.0–41.3 42.0–80.0	0.03-0.08 0.04-0.08 0.06-0.10 0.08-0.12 0.09-0.14	50 (20- 88)	-53/1120 -53/1020	-53/1020 -53/1020 -53/1020 -53/1020	-53/1120 -53/1020 -53/1020 -53/1020 -53/1020	-53/1020
	23.21 23.22	Titanium alloys α , near α and $\alpha + \beta$ alloys in annealed or aged conditions	R _m (MPa) 600–1500	12.7–17.0 17.5–25.4 26.0–30.0 31.0–41.3 42.0–80.0	0.04-0.10 0.08-0.14 0.12-0.16 0.14-0.18 0.16-0.20	60 (40–132)	-53/1120 -53/H13A -53/H13A -53/H13A -53/H13A	-53/1020 -53/H13A -53/H13A -53/H13A -53/H13A	-53/1120 -53/H13A -53/H13A -53/H13A -53/H13A	-53/1020 -53/H13A -53/H13A -53/H13A -53/H13A
K	07.1	Malleable cast iron Ferritic (short chipping)	110–145	12.7–17.0 17.5–25.4 26.0–30.0 31.0–41.3 42.0–80.0	0.04-0.14 0.10-0.18 0.14-0.20 0.16-0.26 0.18-0.28	170 (140–230)	-53/3040	-53/1020	-53/1120 -53/1020 -53/1020 -53/1020 -53/1020	-53/1020 T-53/1020
	07.2	Pearlitic (long chipping)	150–270	12.7–17.0 17.5–25.4 26.0–30.0 31.0–41.3 42.0–80.0	0.04–0.10 0.08–0.14 0.12–0.18 0.14–0.20 0.15–0.22	140 (105–170)	-53/3040	-53/1020	-53/1120 -53/1020 -53/1020 -53/1020 -53/1020	-53/1020 T-53/1020
	08.1	Grey cast iron Low tensile strength	150–220	12.7–17.0 17.5–25.4 26.0–30.0 31.0–41.3 42.0–80.0	0.04-0.14 0.10-0.18 0.14-0.20 0.16-0.26 0.18-0.28	250 (210–310)	-53/3040	-53/1020	-53/1120 -53/1020 -53/1020 -53/1020 -53/1020	-53/1020 T-53/1020
	08.2	High tensile strength	200–330	12.7–17.0 17.5–25.4 26.0–30.0 31.0–41.3 42.0–80.0	0.04-0.10 0.08-0.14 0.12-0.18 0.14-0.20 0.15-0.22	170 (125–230)	-53/3040	-53/1020	-53/1120 -53/1020 -53/1020 -53/1020 -53/1020	-53/1020 T-53/1020
	09.1	Nodular cast iron Ferritic	125–230	12.7–17.0 17.5–25.4 26.0–30.0 31.0–41.3 42.0–80.0	0.04-0.10 0.08-0.14 0.12-0.18 0.14-0.20 0.15-0.22	170 (125–215)	-53/3040	-53/1020	-53/1120 -53/1020 -53/1020 -53/1020 -53/1020	-53/1020 T-53/1020
	09.2	Pearlitic	200–300	12.7–17.0 17.5–25.4 26.0–30.0 31.0–41.3 42.0–80.0	0.04-0.10 0.08-0.14 0.12-0.18 0.14-0.20 0.15-0.22	150 (110–200)	-53/3040	-53/1020	-53/1120 -53/1020 -53/1020 -53/1020 -53/1020	-53/1020
н	04.1	Extra hard steel Hardened and tempere	^{ed} 450-	12.7–17.0 17.5–25.4 26.0–30.0 31.0–41.3 42.0–80.0	0.05-0.08 0.07-0.15 0.07-0.15 0.10-0.15 0.10-0.15	40 (30–80)	-53/3040	-53/1020	-53/1020 -53/1120	-53/1020
Ν	30.12	Aluminium alloys Wrought or wrought and aged	30–150	12.7–17.0 17.5–25.4 26.0–30.0 31.0–41.3 42.0–80.0	0.04-0.12 0.06-0.16 0.10-0.18 0.12-0.22 0.14-0.26	350 (300–440)	-53/1120 -53/H13A -53/H13A -53/H13A -53/H13A	-53/1020 -53/H13A -53/H13A -53/H13A -53/H13A	-53/1120 -53/H13A -53/H13A -53/H13A -53/H13A	-53/1020 -53/H13A -53/H13A -53/H13A -53/H13A
	30.21	Cast, non aging	40–100	12.7–17.0 17.5–25.4 26.0–30.0 31.0–41.3 42.0–80.0	0.04-0.12 0.06-0.16 0.10-0.18 0.12-0.22 0.14-0.26	150 (30–440)	-53/1120 -53/H13A -53/H13A -53/H13A -53/H13A	-53/1020 -53/H13A -53/H13A -53/H13A -53/H13A	-53/1120 -53/H13A -53/H13A -53/H13A -53/H13A	-53/1020 -53/H13A -53/H13A -53/H13A -53/H13A
	30.22	Cast or cast and aged	70–140	12.7–17.0 17.5–25.4 26.0–30.0 31.0–41.3 42.0–80.0	0.04-0.12 0.06-0.16 0.10-0.18 0.12-0.22 0.14-0.26	300 (250–385)	-53/1120 -53/H13A -53/H13A -53/H13A -53/H13A	-53/1020 -53/H13A -53/H13A -53/H13A -53/H13A	-53/1120 -53/H13A -53/H13A -53/H13A -53/H13A	-53/1020 -53/H13A -53/H13A -53/H13A -53/H13A
	33.1	Copper and copper alloys Free cutting alloys (Pb \ge 1%)	50–160	12.7–17.0 17.5–25.4 26.0–30.0 31.0–41.3 42.0–80.0	0.04–0.12 0.06–0.16 0.10–0.18 0.12–0.22 0.14–0.26	300 (250–385)	-53/1120 -53/H13A -53/H13A -53/H13A -53/H13A	-53/1020 -53/H13A -53/H13A -53/H13A -53/H13A	-53/1120 -53/H13A -53/H13A -53/H13A -53/H13A	-53/1020 -53/H13A -53/H13A -53/H13A -53/H13A
	33.2	Brass and leaded alloys (Pb ≤ 1%)	50–160	12.7–17.0 17.5–25.4 26.0–30.0 31.0–41.3 42.0–80.0	0.04-0.12 0.06-0.16 0.10-0.18 0.12-0.22 0.14-0.26	230 (180–265)	-53/1120 -53/H13A -53/H13A -53/H13A -53/H13A	-53/1020 -53/H13A -53/H13A -53/H13A -53/H13A	-53/1120 -53/H13A -53/H13A -53/H13A -53/H13A	-53/1020 -53/H13A -53/H13A -53/H13A -53/H13A

Insert positioning:

) = Peripheral

В

С

D

Ε

F

G

Η

Graphs for Coromant U and T-Max U drills

Compensation factors for different cutting speeds

v _c m/min	78	93	100	123	153	200	250	300
Factor	0.78	0.93	1.00	1.23	1.53	2.00	2.50	3.00

The graphs show nominal values which should not be regarded as strict recommendations. The values may need adjusting depending on the machining conditions e.g., the type of material. Note that only net power ratings are given. Allowance must be made for the efficiency of the machine and the cutting edge wear.

Specifications for Coromant U

Specifications for Coromant U

Specifications for Coromant U

Ε

F

G

В

С

D

F

F

G

Н

Varying the hole diameter with a rotating drill

The ability to adjust the diameter of an indexable insert drill is an important feature which extends the working area of one drill and reduces the need to have several close diameter versions in stock. Moreover, the ability to accurately set the cutting edges of indexable insert drills means that they take on a wider role as a high-productivity tool that makes close-tolerance holes. Tolerances within +/- 0.05 mm can be held.

An adjustable, specially designed tool holder for drills simplifies precision setting. This is a precision toolholder ensuring high accuracy and stability for drilling. It makes it easier to compensate for diameter deviations or to off-set the drill to make additional hole diameters. Sleeves are used to adapt various ISO shank sizes for one holder and make it possible to widen the application area for indexable insert drills and rotating tools, such as on machining centres.

Two adjustable toolholder sizes are available, taper 40 and 50 with each series including Coromant Capto adaptor as well as two different types of solid holders. Taper 40 size holders will take drill diameters of 12.7 to 25.99 mm while taper 50 size takes 12.7 to 30.99 mm. The adjustment of the drill is always performed with the peripheral insert edge on a level with the centre-line of the holder. Setting is easily done by turning the scale ring surrounding the holder, marked in increments of 0.05 mm, indicating a diametrical movement of the tool. The scale has a zero mark as a nominal setting for the holder only.

The adjustable toolholder will always set the peripheral insert of the drill on a level with the centre-line of the holder to ensure correct radial adjustment. Adjustment/setting is made by turning a scale ring surrounding the holder marked in increments of 0.05 mm, indicating the diametrical movement of the drill. The scale also has a zero mark, as a nominal setting for the holder only. The adjustment range for the the drill should not be exceeded and it may be necessary to machine with a smaller feed rate.

Setting of the holder can be made in a presetting unit, preferably one equipped with projector and electronic scanning facility. Initially the true nominal diameter for each drill has to be measured. The adjustment of the drill position can then be carried out to the hole diameter required. The setting range of the holder (+1.4/-0.4 mm on the diameter) does not correspond with the setting range for Coromant U-drills in diameters 16.5, 17

and 25 mm, this value has to be carefully

checked in the ordering information before

setting, and should never be exceeded. A diameter below the nominal value of the drill should never be considered. Further adjustments after the basic setting can normally be performed outside the presetting unit by refering to the scale only. Four locking screws keep the set value in position. Before the setting procedure commences these screws must be slackened off. The sleeve should be removed and cleaned when it is not in use for long periods.

Radial adjustment of rotating drills, in increments of 0.05 mm. - Radial adjustment – 0.2 /+ 0.7 mm - Hole tolerances: down to ± 0.05 mm

SANDVIK

Radial adjustment for Coromant U

Coromant U drills $2 \times D_{c}$

Drill Jiameter	Radial adjustm (max)	ent					
D _c mm	Max D _c						
12.7	+ 1.2	→	15.1				
13	+ 1.15		15.3				
13.5	+ 1.1		15.7				
14	+ 1.0		16.0				
14.5	+ 0.9		16.3				
15	+ 0.85		16.7				
15.5	+ 0.75		17.0				
16	+ 0.7		17.4				
16.5	+ 0.6		17.7				
17	+ 0.5		18.0				
17.5	+ 1.0	→	19.5				
18	+ 0.9		19.8				
18.5	+ 0.85		20.2				
19	+ 0.8		20.6 01.5				
20	+ 0.75	_	21.0				
21	+ 1.5		24.0				
22	+ 1.25		∠4.0 25.0				
23	+ 1.0		25.0				
25	+ 0.5		26.0				
26	+ 2.5	-	31.0				
27	+ 2.2	-	31.4				
28	+ 2.1		32.2				
29	+ 1.8		32.6				
30	+ 1.8		33.0				
31	+ 3.5	>	38.0				
32	+ 3.2		38.4				
33	+ 3.0		39.0				
34	+ 2.8		39.6				
35	+ 2.5		40.0				
36	+ 2.3		40.6				
37	+ 2.0		41.0				
38	+ 1.8		41.6				
39	+ 1.5		42.0				
40 41	+ 1.2		42.4 43.0				
40	. 4.0		F0.0				
42 /3	+ 4.2	->	50.4 51.0				
44	+ 3.7		51.4				
45	+ 3.6		52.2				
46	+ 3.3		52.6				
47	+ 3.0		53.0				
48	+ 2.7		53.4				
49	+ 2.5		54.0				
50	+ 2.2		54.4				
51	+ 2.0		55.0				
52	+ 1.8		55.6				
53	+ 1.5		56.0				
54	+ 1.2		56.4				
55	+ 0.8		56.6				
56	+ 0.6		57.2				
5/	+ 0.5		58.0				
20	+ 0.4		58.8				

Coromant U drills $3 \times D_{c}$

Drill	Radial adjustment
diameter	(max)
D _c mm	Stationary drill
17.5	+ 1.0
18	+ 0.9
18.5	+ 0.85
19	+ 0.8
20	+ 0.75
21	+ 1.5
22	+ 1.25
22.2	+ 1.2
23	+ 1.0
24	+ 0.75
25	+ 0.5
25.4	+ 0.4
26	+ 2.5
27	+ 2.2
28	+ 2.1
28.6	+ 1.9
29	+ 1.8
30	+ 1.5
31 31.8 32 33 34 35 36 37 38 39 40 41 41.3	+ 3.5 + 3.3 + 3.2 + 3.0 + 2.5 + 2.3 + 2.0 + 1.8 + 1.5 + 1.2 + 1.0 + 0.9

T-Max U d Left hand	rills drills	2.5 × D _c
Drill diameter	Radial ad	justment

Drill diameter	Radiai adjustment (max)	
D _c mm	Stationary drill	
17.5 18 18.5 19 20	+ 1.5 + 1.4 + 1.3 + 1.2 + 1.0	
21 22 23 24 25	+ 1.6 + 1.5 + 1.25 + 1.0 + 0.8	
26 27 28 29 30	+ 2.5 + 2.2 + 2.1 + 1.8 + 1.5	
31 32 33 34 35 36	+ 3.5 + 3.2 + 3.0 + 2.8 + 2.5 + 2.3	
37 38 39 40 41	+ 2.0 + 1.8 + 1.5 + 1.2 + 1.0	
42 43 44 45 46 47 48 49 50 51 52 53	+ 4.2 + 4.0 + 3.7 + 3.5 + 3.3 + 3.0 + 2.7 + 2.5 + 2.2 + 2.2 + 2.0 + 1.8 + 1.5	
53 54 55 56 58	+ 1.5 + 1.2 + 0.8 + 0.6 + 0.4	

٦

А

В

С

D

Е

F

G

Coromant U drill R416.2

Recommended value must be used to obtain required I_{3s} or I_4

Compatible with ABS holders-ABS

В

С

D

Ε

F

G

Н

T-Max U stack drills — R416.01

ISO	СМС	Material		Drill dia.	Feed	Speed	Geometry / Grade
	No.						
			НВ	D _c mm	f_ mm/r	v _c m/min	Insert positioning
		Unalloyed steel		27-32.99	0.05-0.08		-54/235
Ρ	01.1	Non hardened	90–200	33-42.99	0.09-0.09	100-300	-56/235
		0.05–0.25% C		43-59	0.07-0.12		-56/235
		Low-alloy steel		27-32.99	0.05-0.08		-54/235
	02.1	Non hardened	150-260	33-42.99	0.09–0.09	75-200	-56/235
				43-59	0.07-0.12		-56/235
R A		Stainless steel		27-32.99	0.05-0.08		-54/235
IVI	05.11	Ferritic, Martensitic	150-270	33-42.99	0.09–0.09	75-200	-56/235
		13–25% Cr		43-59	0.07-0.12		-56/235
		Austenitic		27-32.99	0.05–0.08		-54/235
	05.21	Ni > 8%	150–275	33-42.99	0.09–0.09	100-300	-56/235
		13–25% Cr		43-59	0.07-0.12		-56/235
	05.51	Austenitic		27-32.99	0.05–0.08		-54/235
	05.52	Ferritic	180–320	33-42.99	0.09-0.09	50-150	-56/235
		(duplex)		43-59	0.07-0.12		-56/235
		Stainless steel		27-32.99	0.05-0.08		-54/235
	15.21	Austenitic castings	150–250	33-42.99	0.09-0.09	30-200	-56/235
				43-59	0.07-0.12		-56/235

Application area

The drill is specially designed for drilling holes in stacked components, with or without air gaps. The max recommended gap is 1 mm.

The combined features of geometry and position of the inserts produce a smaller end disc as different from conventional drills upon break through of the hole. This avoids the danger of inserts crushing.

The drill body is designed in the same way as other T-Max U drills with the exception of the inserts and insert seats.

Two types of inserts are used, a trigon insert with facets (WCMX xx xx SR) and a triangular insert (TCMT xx xx xx).

The centre insert (WCMX) is positioned so that its centre point begins cutting first and is placed somewhat in front of the periphery insert. Hence machining starts at the centre and continues outwards to the periphery.

The small end disc which is formed when drilling a through-hole can easily be flushed down any of the large chip channels.

D

А

В

С

Ε

F

G

In	Inserts for T-Max U trepanning drills R416.7								
Ce W D	Central and Peripheral WCMX D_{o} 60-110				Central TCMT D _c 60-110				
							$d_1 = \frac{7}{4}$		
	Insert code		Dimensions	s, mm					
	• = Peripheral Insert • = Central Insert								
$ \mathcal{A} $	-		I	iC	d ₁	S	r _ε		
All r	ound geometry								
06	WCMX 06 T3 08 R-53	•	6.14	9.525	3.7	3.97	0.8		
	WCMX 06 T3 08 R-51	0	6.14	9.525	3.7	3.97	0.8		
Opti	imized geometry								
06	WCMX 06 T3 08-58	0	6.14	9.525	3.7	3.97	0.8		
	WCMX 06 T3 08-56	\odot	6.14	9.525	3.7	3.97	0.8		
16	TCMT 16 T3 08-UR	\odot	16.5	9.525	4.4	3.97	0.8		

В

С

D

Ε

F

Graphs for T-Max U trepanning tools – R416.7

The graphs show nominal values which should not be regarded as strict recommendations. The values may need adjusting depending on the machining conditions e.g., the type of material.

Note that only net power ratings are given. Allowance must be made for the efficiency of the machine and the cutting edge wear. G

Cutting data for T-Max U trepanning tools — R416.7

ISO	СМС	Material	Drill	Feed	Speed	Geometry	/ Grade	
	No.			dia			FIRST CHOICE Highest productivity	Complementary
			НВ	D _c mm	f _n mm/r	v m/min	•	•
Ρ	01.0 01.1 01.2 01.3 01.4	Unalloyed steel Non hardened 0.05–0.10% C Non hardened 0.05–0.25% C Non hardened 0.25–0.55% C Non hardened 0.55–0.80% C High carbon & carbon tool steel	80–170 90–200 125–225 150–250 180–275	60–110	0.07–0.10 0.07–0.12 0.10–0.20	250–345 225–315 130–210	-58/3040 -58/3040 -51/235	-56/235 -56/235 -56/235
	02.1 02.2	Low-alloy steel Non hardened Hardened	150–260 220–400	60–110	0.11–0.18 0.10–0.20	145–210 100–165	-51/235	-53/235
	03.11 03.13 03.21 03.22	High-alloy steel Annealed Annealed HSS Hardened tool steel Hardened steel	50–250 250–450	60–110 60–110	0.10–0.20 0.11–0.18	125–200 90–145	-51/235 -51/235	-53/235 -53/235
	06.1 06.2	Steel castings Unalloyed Low alloyed (alloying elements ≤ 5%)	90–225 150–250	60–110	0.06–0.12 0.11–0.18	195–280 120–175	-58/3040 -51/GC-A	-56/235 -53/235
B A	05.11	Stainless steel Ferritic, Martensitic 13–25% Cr	150–270	60–110	0.10-0.20	170–240	-58/3040	-56/235
IVI	05.21	Stainless steel Austenitic Ni > 8% 18-25% Cr	150–270	60–110	0.10-0.16	100–140	-58/235	-56/235
K	07.1 07.2	Malleable cast iron Ferritic (short chipping) Pearlitic (long chipping)	110–145 150–270	60–110	0.16–0.26 0.14–0.20	140–210 105–155	-53/3040	-53/H13A
	08.1 08.2	Grey cast iron Low tensile strength High tensile strength	150–220 200–330	60–110	0.16–0.26 0.14–0.20	210–280 105–155	-53/4025	-53/H13A
	09.1 09.2	Modular cast iron Ferritic Pearlitic	125–230 200–300	60–110	0.14–0.20 0.14–0.20	125–195 110–180	-53/3040	-53/H13A
Ν	30.12 30.21 30.22	Aluminium alloys Wrought solution treated & aged Cast Cast, solution treated & aged	75–150 40–100 70–125	60–110	0.12-0.22	250-400	-53/H13A	-53/H13A
	33.1 33.2	Copper and copper alloys Free cutting alloys (Pb \ge 1%) Brass and leaded bronzes (Pb \le 1	50–160 %)	60–110	0.12-0.22	180–350	-53/H13A	-53/H13A

Insert positioning:

 \bigcirc = Central and peripheral inserts

Drilling

A

В

С

D

Е

F

G

В

С

D

Ε

Application hints for T-Max U trepanning tool – R416.7

Application area

The drill is designed for drilling solid workpieces as well as stacked components with or without air gaps.

Solid workpiece

Normally the trepanning tool is used for drilling solid workpieces.

Standard cartridge is used together with WCMX insert size 06 in both peripheral and inner cartridges.

Workpiece without air gaps

When a stack component is drilled, an SD cartridge for stack drilling must be used to avoid end disc problem. WCMX insert size 06 should be used in both peripheral and inner cartridges.

Workpiece with air gaps

To avoid problems with the end disc between the plates an inner cartridge 3282 32 L4-1 together with TCMT size 16 must be used (see fig. 1).

When this inner cartridge is used, no end disc will be formed between the workpieces (see figs. 2 and 3).

As peripheral cartridge, use SD cartridge with WCMX insert size 06.

В

С

D

Holding instructions for T-Max U trepanning drills – R416.7 and indexable drills – R416.9

Assembly instructions Note, when using Varilock basic holders:

When machining with T-Max U drills R416.9 and R416.7, the original screw and lock nut in the Varilock basic holder must be replaced by a centering sleeve (5638 030-01) and screw (5516 030-01), which must be ordered separately.

Mounting of drill into holder

1. If the Varilock basic holder is used, remove the Varilock nut and screw from the basic holder, using Varilock key 5680 065-02.

2. Twist the screw 5516 030-01 two full turns into the holder (Varilock or T-Max U holders).

3. Fit the centering sleeve 5638 030-01 into the rear of the drill.

4. Screw drill and holder (Varilock or T-Max U holders) together using key 5680 005-01. Ensure that the driving dog is aligned with the driving slot. Then tighten with a torque wrench. Tightening torque 180-200 Nm.

G

В

С

D

Ε

F

G

Η

Coromant U step and chamfer drill

High productivity - three tools in one

Operations

Cutting data recommendations

- Choose cutting data according to the drilling operation
- Reduce cutting data when step drilling
- Choose corner radius 0.4 mm for step/chamfer insert. If stronger insert is needed, choose radius 0.8 mm.
- For alternative step/chamfer inserts, see Turning tool catalogue.

Recommended step and chamfer inserts

В

С

D

Ε

F

Coromant U drill, step and chamfer drill

Standard inserts:

D _{c1} = 12.70-17.43
D _{c1} = 17.44-20.99
D _{c1} = 21.00-25.99
D _{c1} = 26.00-30.99
D _{c1} = 31.00-41.99
D _{c1} = 42.00-58.99

wсмх

Options

No of extra inserts	1 or 2
D _{c1}	1 extra insert; Drill diameter-12.7-57.00 mm
	2 extra inserts; Drill diameter-12.7-55.10 mm
Drill alternative	Step/boring = B1 . Chamfer = C1
К _{r1}	Chamfer angle 1 = 15°-90°
ch ₁	Chamfer width 1 = 0.03-11.23 mm
I _{ch1}	Length chamfer lch1 = 12.3-171.0 mm
D _{c2}	Step/boring diameter 18.43-58.90 mm
I ₂₁	Length to step/boring 12-171.0 mm
Drill alternative	Step/boring = B2 . Chamfer = C2
К _{r2}	Chamfer angle 2 = 15°-90°

Ch2	
D _{c3}	
I ₂₂	
I _{3s}	
Coupling	

Rotate Capto coupling 180°

dm_m/D_{5m} Coupling unit **I**_{1s}

Chamfer width 2 = 0.03-11.23 mm Length chamfer lch2 = **12.3-171.0** mm Step/boring diameter 21.4-58.90 mm Length to step/boring 12.8-171.0 mm Reach length 17.5-176.7 mm Туре

Yes or No

Coupling size M=metric or U=inch Programming length 35.3-307.4 mm

```
LCMX
```

G

В

С

D

Ε

F

G

Η

Coromant U drill – step and chamfer drill

Designations and formulas for drilling

Designation acc. to ISO	Terminology	Unit	
D _c	Drill diameter	mm	
ap	Cutting depth	mm	
I_1	Programming length to outer corner	mm	
l _{1s}	Programming length to chisel edge	mm	
I ₂	Total length	mm	
I ₃	Max. operating length to outer corner	mm	
I _{3s}	Max. operating length to chisel edge	mm	
I_4	Recommended max. operation length	mm	
V _c	Cutting speed	m/min	
n	Spindle speed	r/min	
V _f	Feed speed	mm/min	
f _n	Feed per rev.	mm/r	
f _z	Feed per tooth	mm/z	
k _c	Specific cutting force	N/mm ²	
k_{c04}	Specific cutting force for $fz = 0.4$	N/mm ²	
k _{cfz}	Specific cutting force for feed per edge	N/mm ²	
Ff	Feed force	N	
F _u	Feed force caused by friction	N	
м _с	Torque	Nm	
M	Torque caused by friction	Nm	
P	Net power (cutting power)	kW	
P	Power caused by friction	kW	
κ _r	Tool cutting edge angle	Degrees	
λ _{sh}	Tool normal rake angle	Degrees	
9	Cutting fluid quantity	l/min	
p	Cutting fluid pressure	Мра	

$$k_{\rm cfz} = k_{\rm c \ 0.4} \left(\frac{0.4}{f_{\rm z} \, x \, {\rm sin}\kappa_{\rm r}} \right) 0.29 ({\rm N/mm^2})$$

Drilling

В

A

С

D

Е

В

С

D

Ε

F

G

Η

Formulas for Coromant 880, Coromant U, T-Max U, Coromant Delta and CoroDrill Delta-C

Cutting speed (m/min)	$v_{c} = \frac{\pi \times D_{c} \times n}{1000}$
Feed speed (mm/min)	$v_f = f_n \times n$
Feed force (N) ¹⁾	$F_{f} = 0.5 \times \frac{D_{c}}{2} \times f_{n} \times k_{cfz} \times \sin \kappa_{r} $ (N)
Torque (Nm) ¹⁾	$M_{c} = \frac{D_{c} \times f_{n} \times k_{cfz} \times a_{p}}{2000} \left(1 - \frac{a_{p}}{D_{c}}\right)$
Net power (kW) ¹⁾	$P_{c} = \frac{D_{c} \times f_{n} \times k_{cfz} \times v_{c}}{240 \times 10^{3}}$
1) Feed force, torque and power at id	ling is The power requirement is calculated on the basis of an unused tool, i.e. tool without wear.

not included in these formulas.

The power requirement is calculated on the basis of an unused tool, i.e. tool without wear. For a tool with normal wear, the power requirement is 10-30% higher, depending upon the size of the drill.

Specific cutting force k_c for $f_z = 0.4$ for different materials

CMC No.	Material		НВ	Specific cutting force, $k_{c0.4}^{11}$
				N/mm ²
01.1 01.2 01.3	Unalloyed steel	C = 0.15% C = 0.35% C = 0.60%	125 150 200	1900 2100 2250
02.1	Low alloy steel	Non-hardened	180	2100
02.2		Hardened and tempered	275	2600
02.2		Hardened and tempered	300	2700
02.2		Hardened and tempered	350	2850
03.1	High alloy steel	Annealed	200	2600
03.2		Hardened	325	3900
05.11	Stainless steel	Martensitic/ferritic	200	2300
05.21		Austenitic	175	2450
06.1	Steel castings	Unalloyed	180	2000
06.2		Low alloyed	200	2500
06.3		high alloyed	225	2700
04	Hard steel	Hardened steel	55 HRC	4500
06.33		Manganese steel 12%	250	3600
07.1	Malleable cast iron	Ferritic	130	1100
07.2		Pearlitic	230	1100
08.1	Grey cast iron	Low tensile strength	180	1100
08.2		High tensile strength	260	1500
09.1	Nodular cast iron	Ferritic	160	1100
09.2		Pearlitic	250	1800
10	Chilled cast iron		400	3000
20.11	Heat resistant alloys	Fe-base, annealed	200	3000
20.12		Fe-base, aged	280	3050
20.21. 20.31		Ni- or Co-base, annealed	250	3500
20.22. 20.32		Ni- or Co-base, aged	350	4150
20.24. 20.33		Ni- or Co-base, cast	320	4150
30.11	Aluminium alloys	Non heat treatable	60	500
30.12		Heat treatable	100	800
30.21	Aluminium alloys,	Non heat treatable	75	750
30.22	cast	Heat treatable	90	900
33.1 33.2 33.3	Copper and copper alloys	Lead alloys, Pb > 1% Brass, red brass Bronze and leadfree copper including electrolytic copper	110 90 100	700 750 1750

1) The $k_{\rm c}$ 0.4-values are valid for: $f_{\rm z}$ = 0.4 mm/z, $\kappa_{\rm r}$ = 90°, $\lambda_{\rm sh}$ = +6°

В

С

D

E

F

G

Н

If problems should occur

- Indexable insert drills

When cutting edges wear down prematurely giving **poor tool-life**, the cause is usually incorrect cutting data, wrong insert grades or even drill type or poor cutting fluid supply. Instability and poor cutting fluid supply also lead to poor tool-life. When cutting edges chip, the alignment of the drill should be checked for it should be within the recommended limits. Concentricity should be within +/-0.05 mm.

Lack of rigidity in the set-up, tool or machine often lead to chipping, necessitating a tougher cutting edge. If the insert is not seated or retained securely, chipping may occur. Insert seats and screws have to be well maintained in high performance drills with frequent changing of insert screws recommended. Another important factor is how securely the drill is held in the machine for stability during machining – **tool holding quality is important**.

If **over or under sized holes** are produced, the reason is often that the drill is offcentre. Other reasons can be that the machine spindle is out of true, the feed rate is too high or a lack of rigidity in the set-up. If the hole is not symmetrical, the source of the problem can often be traced back to a lack of stability through poor rigidity in set-up or machine. It is also possible that the cutting data is wrong for the material in question.

Unsatisfactory surface finish is usually the result of vibrations arising from poor rigidity in the machining set-up. The drill may be excessively long, held in a poor quality tool holder or tool position, the cutting data may be incorrect for the application or the initial penetration may be into poor surfaces. Cutting fluid supply may be insufficient or chip control not good enough, where chip evacuation is irregular.

The **limiting parameters of tool wear** in drilling are generally security or hole quality. Excessive wear and built up edge that distorts the cutting geometry excessively are hazards that affect how reliably a drill will make the required number of holes.

Good tool holding is vital.

Off-centre drill usually produces incorrect hole sizes.

Practical tips for drilling – if problems occur

(1)

Problems

Front face of drill broken Wear on outside diameter of drill Oversized or undersized hole Chip-jamming in drill flutes Vibrations Cutting edge frittering Unsymmetrical hole Poor tool-life

(2)

Possible remedies

Re-align the drill Increase coolant flow, clean filter, clear drill coolant holes Select a tougher grade Improve stability, improve component fixuring, shorten drill overhang Check bottom of hole or disk for possible centre stub (only Coromant U) Check cutting speed and feed against recommendations Check insert/drill grade against recommendations

Increase cutting speed

	Remedies and solutions								
Problems	Re-align the drill	Increase coolant flow, clean the filter, clear cool- ant holes in drill	Select a tougher grade	Reduce the feed	Improve the stability, reclamp component, shorten drill overhang	Check bottom of hole or disk for centre stub (only Coromant U-drill)	Check Speed/ feed guidelines	Check the carbide grade	Increase the speed
Front face of drill broken	•		•		•		•		
Wear on outside diameter of drill	•				•		•	•	
Oversize/undersize hole	•			•		•	•		
Chip jamming in the drill flutes		•		•			•		•
Vibrations				•	•		•		
Small cutting edge fracture (frittering)	•							•	•
Hole not symmetrical					•		•		
Poor tool life									

Drilling

В

A

С

F

Η

Α

В

С

D

E

F

Basic hints for successful drilling

- check machine alignment, stability, quality of tool holding and fixturing
- check the power, feed force and torque available at machine spindle
- check coolant pressure and flow rates available
- select the right tool for the operation, apply correctly and optimize
- optimize as regards combination of high cutting speed and feed rate for good chip evacuation
- maintain tools regularly change the insert-clamping screw on a regular basis

Additional measures for optimizing drilling

- check on the suitability of the drill for the operation choose the best option available
- establish a reliable, predetermined tool-life program
- use minimum diameter drill and follow recommended insert overlapping
- establish correct feed rates for drilling irregular, rounded and angular surfaces and cross holes
- be aware of the versatility of indexable insert drills for a variety of operations from efficiently drilling a hole to precision hole machining

G

Drilling

A

В

С

D

Е

F

G

Uncoated Cemented Carbide – HW (H13A, P20, K20)

H13A - (N15, S20, K25)

H13A is a fairly fine grained grade with a very good balance between wear resistance and toughness making it a very versatile grade suitable for many materials and applications. Used for milling of heat resistant alloys at moderate cutting speed and feed, milling of aluminum alloys and finishing to medium machining of cast iron. Very suitable for nodular cast iron.

A cemented carbide containing titanium based carbides adding wear resistance and hot hardness. The carbide is PVD coated, with a 3 micron TiN layer. Used for Coromant Delta drills in general steel applications.

K20 - (M30, K20, N15, H20)

A carbide grade with a balanced combination of wear resistance and toughness making it a very versatile grade suitable for many materials and applications. The carbide is PVD coated, with a 3 micron TiN layer. Used for Coromant Delta drills in stainless steel, cast iron, aluminum and heat resistant materials.

Coated Cemented Carbide – HC (GC235, GC1020, GC1025, GC1044, GC1120, GC1210, GC1220, GC3040, GC4014, GC4024, GC4044, N20D)

GC235 - (P40, M35)

GC235 has a very tough carbide substrate, which provides extremely good edge security in toughness demanding operations. The carbide is coated with a 2.5 micron CVD coating of TiC- TiCN-TiN for added wear resistance and lower friction. GC235 is used as a complementary grade for unstable conditions and low to moderate cutting speeds.

GC1044 - (P40, M35, K25)

Fine grained cemented carbide with an excellent combination of both hardness and toughness. The fine grains contribute to keeping the cutting edge sharp throughout the entire tool life. The carbide is PVD coated with a 3 micron bronze colored TiAIN layer giving excellent edge toughness and resistance against built-up edge. The basic choice for central drilling inserts in all materials.

GC1020 - (P40, M35, K25)

Fine grained cemented carbide with an excellent combination of both hardness and toughness. The fine grains contribute to keeping the cutting edge sharp throughout the entire tool life. The carbide is PVD coated with 3 microns of TiCN for improved wear resistance. Versatile grade suitable both as central and peripheral insert in a variety of materials at low to moderate cutting speeds.

GC1120 - (P40, M35, K25)

Fine grained cemented carbide with a good balance between hardness and toughness. The carbide is PVD coated with a 3 micron layer of TiCN for added wear resistance. A basic grade for peripheral inserts at low to moderate cutting speeds in steel, austenitic stainless steel and cast iron.

GC1025 - (P35, M30, K20)

Fine grained cemented carbide with an excellent combination of both hardness and toughness. The fine grains contribute to keeping the cutting edge sharp throughout the entire tool life. The carbide is PVD coated with 4 microns of TiAIN for improved wear resistance and resistant against built-up edge in smearing materials.

A universal grade with excellent resistance and toughness at low to moderate cutting speeds in most materials.

GC1210 - (P10, K10)

Hard and very wear resistant carbide substrate containing titanium based carbides, which adds a very good hot hardness. The carbide is coated with AlCrN giving excellent wear resistance and even better resistance against high cutting temperatures. Ideal grade in Coromant Delta C for drilling at medium to high speed in both cast iron and steel.

В

С

D

E

F

TIAIN

GC1220 - (P20, M20, K20, N20, H20) Fine grained cemented carbide with an excellent combination of both hardness and toughness. The carbide is PVD coated with 3 microns of nano multilayers of TiAIN coating giving very good edge line security. First choice grade for steel, stainless steels and cast iron in Coromant Delta C.

GC4024 - (P20, M20, K20)

GC4024 has a cemented carbide substrate with a good balance between hardness and toughness. The substrate is coated with a MT-CVD layer of TiCN giving excellent abrasive wear resistance, followed by a layer of Al_2O_3 giving very good high temperature protection. The total thickness is about 9 microns. A very universal grade for peripheral inserts in steel, stainless steel and cast iron at medium to high cutting speed.

GC3040 - (P20, M20, K20, H15)

A cemented carbide with a high hardness and toughness. A MT-CVD layer of TiCN giving excellent abrasive wear resistance, followed by a layer of AI_2O_3 giving very good high temperature protection. The total thickness is about 9 microns. The grade is first choice for peripheral drilling inserts in most materials. Work very well at both medium and high cutting speed.

GC4044 - (P40, M35, K25)

Fine grained cemented carbide with an excellent toughness. The carbide is PVD coated with a 3 micron black colored TiAIN layer for improved wear resistance and resistance against built-up edge. The tough choice for peripheral drilling inserts in all materials.

GC4014 - (P15, K15)

A hard carbide substrate with a thin cobalt enriched gradient zone just underneath the coating. This enables the grade to withstand high cutting temperatures with maintained edge line security. On top of this is a MT-CVD layer of TiCN giving excellent abrasive wear resistance, followed by a layer of Al_2O_3 giving very good high temperature protection permitting high metal removal rates. The ideal grade for peripheral insert in finishing to light roughing of steel, steel castings and cast iron at low to medium feed rates at high cutting speed.

N20D - (N20)

A fine grained cemented carbide with an excellent combination of both hardness and toughness. The fine grains contribute to keeping the cutting edge sharp throughout the entire tool life. The carbide is PVD coated with smooth TiAIN adding wear resistance and lowering adherence to work material on the cutting edge. First choice for Aluminum with a Silicon content up to 12%.

G

Wear resistance

A

В

С

D

Ε

F

G

В

С

D

Е

F

G

